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What is the average time a random walker takes to get from A to B on a fractal structure and how does this
mean time scale with the size of the system and the distance between source and target? We take a nonproba-
bilistic approach toward this problem and show how the solution is readily obtained using an analysis of
thermal vibrations on fractals. Invariance under scaling and continuity with respect to the spectral dimension
are shown to be emergent properties of the solution obtained via vibrational analysis. Our result emphasizes the
duality between diffusion and vibrations on fractal structures. Applications to biological systems are discussed.
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In this Rapid Communication we consider a random
walker moving on a fractal bounded domain of size N. We
take a nonprobabilistic approach toward a probabilistic prob-
lem and find, based on the vibrational properties of the net-
work, an approximate expression for the mean-first-passage
time �MFPT� T�N ,r� between two distinct tagged points dis-
tanced r apart,

T�N,r�
N

� C̃�
1 − �r/a�df�2/ds−1�

�ds/2 − 1�
ds � 2

df ln�r/a� ds = 2

− 1 + �r/a�df�2/ds−1�

�1 − ds/2�
ds � 2� . �1�

Here a is the distance between nearest neighbors, ds and df
are the network spectral and fractal dimensions, respectively,

and C̃ is a constant to be defined later in the Rapid Commu-
nication. The joint domain in which the approximation is
valid is given by: �N�1,a�r�Rg	 where Rg is the radius
of gyration. The spectral dimension ds governs the density of
low-frequency normal modes of a fractal. More precisely,
denoting the density of modes g���, the scaling relation
g���
�ds−1 holds for low frequencies. Describing the mass
fractal dimension df is most convenient using a three-
dimensional example. Draw a sphere of radius r enclosing
some lattice points in space and calculate their mass M�r�,
increase r, and calculate again. Do this several times and if
M�r� scales as rdf the exponent df is called the fractal dimen-
sion. We note that the ratio ds /2df is just the Hurst exponent
of the random-walk mean-square displacement in time �1�.

It is important to notice that in general the MFPT between
two points on a finite, anisotropic, and inhomogeneous struc-
ture may depend specifically on the identity of the source
and target points. Equation �1� was hence written for the
disorder average �average over all pairs distanced r apart� of
the MFPT. The main conclusion from Eq. �1� is that as a
function of the source-target distance r the normalized
MFPT either grows like a power law �ds�2� or saturates

toward a limiting constant �ds�2�. In its domain of validity
Eq. �1� covers both the numerically dominant part and the
nonanalytic part of the MFPT. For ds�2 the nonanalytic part
is the numerically dominant one, while for ds�2 it is not.
We note that a result similar to Eq. �1� was obtained via
probabilistic methods in a recent paper by Condamin et al.
�2�. Other relations between first-passage-time statistics and
the spectral dimension can be found in �3–5�.

Deriving Eq. �1�, we start by solving the analogous vibra-
tional problem using scaling arguments. We then continue
with a more direct treatment which leads to additional in-
sights regarding the solution. Consider an elastic network
�EN� of masses coupled by harmonic springs in the frame-
work of what is known as the scalar elasticity model or the
Gaussian network model �GNM� when applied for proteins
�6,7�. The same network can be thought of as a network of
nodes connected by edges �which we will refer to as RN� and
we will alternate between these representations as we go �see
Fig. 1�. Let us now couple the EN to a thermal bath and
consider a MFPT problem on the RN where at every time
step the random walker on the RN performs a random jump
to a nearest neighbor without preference. Consider two nodes
on the RN, i and j, characterized by an Euclidean distance r
between them. What is the MFPT T�i , j� for motion between
sites i and j? �If the MFPT depends on the direction of travel,
we define T�i , j� to be the average for the two directions.� On
the EN the distance between mass i and j is not fixed due to
thermal fluctuations. From the way we have constructed the
EN �Fig. 1� it follows that the equilibrium �ensemble-
average� distance is r, and we will denote the instantaneous
distance by rij. It turns out that there is a relation between the
thermal variance in rij and the MFPT T�i , j� �8�,

T�i, j�
N

=
z�

6kBT
��rij − r�2� =

z�

6kBT
��rij

2 � , �2�

where � is the network spring constant and z is the mean
coordination number of a node in the RN. See Fig. 1 for an
explanation and visual illustration of this result. One way to
evaluate T�i , j� is via direct evaluation of the thermal vari-
ance ��rij

2 �. We return to this approach later on. Our current*Corresponding author; klafter@post.tau.ac.il
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efforts concentrate on an alternative route. A rearranged ver-
sion of Eq. �2�,

kBT =
Nz�

6T�i, j�
��rij

2 � 
1

2
kij

ef f��rij
2 � , �3�

immediately lends itself to an effective inverse spring con-
stant interpretation of T�i , j�. The higher the MFPT T�i , j�,
the softer the effective spring connecting sites i and j; the
softer the spring, the higher the magnitude of the fluctua-
tions. We note here that a similar analogy was made between
T�i , j� and the point to point resistivity ��i , j� in the analo-
gous electrostatic problem �9,10�. Defining T�N ,r� as the av-
erage of T�i , j� over all pairs with an equilibrium distance r,
we conclude that the effective spring constant associated
with this distance is

kr
ef f =

Nz�

3T�N,r�
, �4�

In deriving the scaling of kr
ef f for fractal structures we follow

Alexander �11� and associate a length scale with a vibrational
frequency. Consider the isolation of a fractal blob of size r
from an original larger fractal. High-frequency modes for
which ����r� will not be effected by this isolation; on the
other hand, low-frequency modes for which ����r� will
disappear from the spectrum due to the disconnection of the
blob. By construction the crossover will occur at ��r� the
frequency we have associated with r. In the domain:
a�r�Rg, this frequency was shown to scale as
��r�
r−df/ds �11� and we note that this is nothing but the
appropriate dispersion relation for a fractal elastic network.
Let us now use this result in order to associate a length scale

with an effective spring constant. Coarse graining the origi-
nal fractal as we collapse all blobs of size r to points of mass
M�r�
rdf, we construct a new network on this scale. Pre-
serving the self-similarity we require that the basic frequency
�highest� in the coarse-grained fractal would be ��r�, and it
follows that the spring constant of the springs connecting the
newly adjacent points should be �11�

kr
ef f  M�r��2�r� 
 rdf�1−2/ds�. �5�

Substituting into Eq. �4� we obtain the correct scaling depen-
dence of the normalized MFPT on the intersite distance,

�
T�N,r�

N

 rdf�2/ds−1� ds � 2

T�N,r�
N


 ln r ds = 2� , �6�

where in the case of a vanishing exponent we have assumed
a logarithmic correction. Equation �6� gives the dependence
up to an unknown additive constant A and an unknown mul-
tiplicative constant B. The sign of the multiplicative constant
B is determined by the rather intuitive requirement from the
averaged MFPT to be a monotonically increasing function of
the distance. It follows that the sign is a step function of the
spectral dimension and that

�B � 0 ds � 2

B � 0 ds 	 2
� . �7�

We now provide a more direct derivation of the same
result. This time we will start from Eq. �2� and directly
evaluate ��rij

2 �. First we denote by r�i
0 and u� i the equilibrium

position of the ith mass and the instantaneous deviation from
this position, respectively. It follows that the instantaneous
distance separating any given pair is: rij ��r� j

0+u� j −r�i
0−u� i�2.

If the equilibrium distance between mass i and j is r it is
straight forward to show that

T�i, j�
N

=
z�

6kBT
��rij − r�2� =

z�

6kBT
�u� j

2 + u� i
2 − 2u� i · u� j� , �8�

using the fact that �rij�=r, and �u� j�= �u� i�=0. In order to pro-
ceed we average over all the Nr pairs distanced r apart and
get

T�r�
N

�
z�

3kBT
� 1

N
�
i=1

N

�u� i
2� −

1

Nr
�

pairs

�u� i · u� j�� �9�

where we have further assumed that the pairs average over
the first two terms in the right-hand side of Eq. �8� is well
represented by the average mean-square displacement �first
term in Eq. �9��. Calculating the thermal average we may
consider the contribution of each normal mode separately.
We consider two limits �12,13�, normal modes with frequen-
cies ����r� result in a correlated movement �on average� of
pairs separated r apart �u� i ·u� j �u� i

2�, and hence in this limit,

FIG. 1. �Color online� Left: a network of nodes connected by
edges �RN�; right: an analogs elastic network of masses coupled by
harmonic springs �EN�. One can transform a RN to an EN by trans-
forming nodes to masses and edges to springs. We study the relation
between a random walk on the RN and the thermal vibrations of the
EN. Consider two nodes on the RN, i and j, characterized by an
Euclidean distance r between them. On the EN the distance be-
tween mass i and j is not fixed due to thermal fluctuations. From the
way we have constructed the EN it follows that the equilibrium
�ensemble-average� distance is r, and we will denote the instanta-
neous distance by rij. The MFPT a random walker takes to get from
node i to node j �if the MFPT depends on the direction of travel, we
define T�i , j� to be the average for the two directions� on a RN is
proportional to the thermal variance in the distance between mass i
and mass j on an EN coupled to a thermal bath.
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1

N
�
i=1

N

�u� i
2� −

1

Nr
�

pairs

�u� i · u� j� � 0. �10�

Conversely, for normal modes with frequencies ����r�, the
terms in the second sum add up incoherently and this term
can hence be neglected. In this limit we get

1

N
�
i=1

N

�u� i
2� −

1

Nr
�

pairs

�u� i · u� j� �
1

N
�
i=1

N

�u� i
2� . �11�

We are left with the high-frequency contribution to 1
N�i=1

N �u� i
2�

and it is reasonable to sum only over relevant modes and
approximate

T�r�
N

�
z�

3kBT
�

��r�

��a� 3kBT

mN

g���
�2 d� =

z

N
�

l�r�

l�a� g�l�
l

dl . �12�

Here g��� denotes the density of states, ��a� and ��r� are
the frequencies associated with the mean spacing between
nearest neighbors a and the distance r, respectively, m is the
mass of a single bead in the elastic network, � is the spring
constant, lm�2 /� is a dimensionless variable, and the fac-
tor 3 appears due to the threefold degeneracy of the scalar
elasticity model. In order to evaluate the integral we recall
that ��r�
r−df/ds. On the other hand ��a� is the basic fre-
quency in the system and is hence of order �� /m; it follows
that l�r�=C�r /a�−2df/ds where C is a numeric constant of or-
der unity. The scaling of the density of states g�l�
 lds/2−1 is
easily found by a change in variable when we recall that:
g���
�ds−1. Preserving normalization, �l�2Rg�

l�a� g�l�dl=N, one
gets

g�l� =
Nds

2Cds/2�1 − �2Rg/a�−df�
lds/2−1, �13�

where Rg is the radius of gyration. Substituting into Eq. �12�
we integrate and obtain Eq. �1� where C̃=

zds

2C�1−�2Rg/a�−df� . We
note that the expression we have obtained is clearly missing
an additive constant since for a random walker traveling to a
nearest neighbor �r=a� it predicts zero MFPT.

Examining Eq. �1� more closely shows that the solution
obtained via vibrational analysis complies with two basic
requirements demanded from any solution of this problem:
invariance under scaling and continuity with respect to the
spectral dimension. Clearly if we were to take our RN and
inflate/shrink it, creating an exact magnified/miniature copy
of it, the MFPT between two sites will not be affected. This

is so because the MFPT is only affected by the transition
probabilities between sites and by construction these were
left unchanged. It follows that T�N ,r� must be invariant un-
der a scaling transformation that inflates/shrinks all lengths
by a factor of 
; Eq. �1� is clearly invariant under this trans-
formation. Another thought experiment we could do is to
think of a system whose spectral dimension is a tunable pa-
rameter. Examining the MFPT between two sites as we con-
tinuously vary the value of ds, we would expect a continues
behavior of T�N ,r�. Indeed, taking the limit ds→2 �from
above/below� in Eq. �1� demonstrates the continuity of
T�N ,r� with respect to the spectral dimension.

In this Rapid Communication we have introduced a vibra-
tional shortcut to the solution of the MFPT problem on frac-
tal structures and showed how the solution is readily ob-
tained without the use of probabilistic arguments. Effective
inverse spring constant interpretation of the MFPT allowed
us to obtain the desired solution via scaling arguments. Di-
rect calculation of the thermal variance in the distance be-
tween two tagged masses provides another route to the solu-
tion. Invariance under scaling and continuity with respect to
the spectral dimension were shown to be emergent properties
of the solution obtained via vibrational analysis. Our result
emphasizes the duality between diffusion and vibrations on
fractal structures. The study of diffusion and vibrations is
essential to the understanding of biological systems where
fractals were shown to naturally emerge. From the 3D struc-
ture and dynamics of single proteins �14–16� through the 3D
organization of chromatin in the nucleus �17,18� and up to
the entire cell level �19�, fractals appear time and time again.
As we have demonstrated above, when studying diffusion it
is sometimes much more effective to tackle the dual problem
of vibrations and vice versa. Even in the case where such a
transformation does not carry with it an immediate compu-
tational gain, the insights gained from considering the analo-
gous problem may be of interest. In Ref. �16� we discuss
how such a procedure sheds new light regarding the fractal-
like nature of proteins. In particular we utilize the inverse
spring constant interpretation of the MFPT in the analysis of
conformational changes in proteins.
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